
CS 5594: BLOCKCHAIN
TECHNOLOGIES

THANG HOANG, PhD

Spring 2024

PROGRAMMABLE BLOCKCHAIN

Overview

Ethereum

Smart Contracts

Ethereum Virtual Machine

Decentralized Applications

2

ETHEREUM

3

Limitation of Bitcoin
Recall: UTXO contains (hash of) public key scripts

(simple) script: indicate conditions when UTXO can be spent

Lack of Turing-completeness

script does not nearly support everything

 Lack of loop instructions

Value-blindness

UTXO is all-or-nothing – it must be spent completely as a whole

Cannot provide fine-grained control over the amount that can be withdrawn

Example – Hedging contract: A and B put in $1000 worth BTC; after 30 days sends
$1000 worth of BTC to A and the rest to B

4

Limitation of Bitcoin

Lack of state

UTXO can be either spent or unspent

Script does not have their own internal persistent memory

Impossible for multi-stage contracts or enforce global rules on assets

Difficult to implement complex stateful contracts

Blockchain-blindness

scripts cannot access some blockchain data such as nonce, timestamp – all are
valuable sources of randomness

Limit applications in gambling

5

Ethereum
A universal, programmable blockchain

Founder: Vitalik Buterin

Russian-Canadian programmer

Timelines
Image from Wikipedia

2013 2014 2015 2016 2017 2018 2019 2020 2021

Idea / White paper

Yellow paper

Frontier
Genesis block Byzantium hard fork Istanbul hard fork ETH 2.0 phase 1

ETH 2.0 phase 0Overtook BTC w.r.t
active users

Official release (Homestead)

6

Ethereum Crypto
ECDSA for digital signatures (like Bitcoin)

Keccak-256 for hash functions (vs. SHA-256 in Bitcoin)

SHA-3

Sponge construction

7

Ethereum Block
Keep track of account balance

Not Unspent Transaction Outputs (UTXO) type like
Bitcoin

An Ethereum block consists of two components

1. Block header with 15 elements

2. Block body
1. List of Transactions
2. List of Ommers

8

Ethereum Block
Block header

Consensus data: parent hash, difficulty, PoW solution, etc

Beneficiary: where TX fees will go (address)

World state root: updated world state

 Merkle Patricia Tree hash of all accounts in the system

TX root: Merkle hash of all TXs included in block

TX receipt root: Merkle hash of log messages
generated in block

Gas used: Tells verifier how much work
to verify block

Ethereum block header

stateRoot transactionsRoot receiptsRoot

parentHash

ommersHash

beneficiary

logsBloom

timestamp extraData

difficulty

number

gasLimit

gasUsed

mixHashnonce

balance storageRoot nonce codeHash
Ethereum account state

Figure 1. Ethereum block header and state merkle tree.

blockchain-based systems. Section IV presents the proposed
architecture. Section V discusses the prototypical implementa-
tion of the architecture in the context of Laava’s use case. Sec-
tion VI evaluates the proposed architecture before Section VII
concludes the paper and outlines the future work.

II. BACKGROUND AND RELATED WORK

A. Background: Blockchain

A blockchain is a distributed append-only store of trans-
actions distributed across computational nodes and structured
as a linked list of blocks, each containing a set of trans-
actions [23]. Blockchain was introduced as the technology
behind Bitcoin [10]. Its concepts have been generalized to dis-

tributed ledger systems that verify and store any transactions
without coins or tokens [18], without relying on any central
trusted authority like traditional banking or payment systems.
Instead, all participants in the network can reach agreements
on the states of transactional data to achieve trust.

Merkle trees are an important part of blockchain, supporting
fundamental blockchain functionality and enabling efficient
and secure verification of large data structures. Merkle trees
have a hash-based structure that can ensure data integrity in
a trivial way: each node (except leaves) in the tree contains
the hash of its child node values; if nothing changed, the root
will be the same; otherwise only the hashes on the path from
the root to the changed leaves are changed. The Merkle tree
used in the Ethereum blockchain platform is called Merkle
Patricia tree [1]. There are three different Merkle Patricia
tree structures in Ethereum, as illustrated in Fig. 1: state tree,
transaction tree and receipt tree. Every block header contains
the roots of those three trees. The global state tree contains
a key-value pair for every account in the Ethereum network
and is updated by every transaction. The key is the account
address while the value is an encoding of details including
nonce, balance, storageRoot and codeHash. The root of state
tree is cryptographically dependent on all state tree data and
can be used as a unique and secure identifier for the state tree.

A smart contract is a user-defined program that is deployed
and executed on a blockchain system [12], [23], which can
express triggers, conditions and business logic [21] to enable

complex programmable transactions. Smart contracts can be
deployed and invoked through transactions, and are executed
across the blockchain network by all connected nodes. The
signature of the transaction sender authorizes the data payload
of a transaction to create or execute a smart contract. Trust
in the correct execution of smart contracts extends directly
from regular transactions, since (i) they are deployed as data
in a transaction and thus immutable; (ii) all their inputs are
through transactions and the current state; (iii) their code is
deterministic; and (iv) the results of transactions are captured
in the state and receipt trees, which are part of the consensus.

When using a blockchain, there are different types of
deployments, including public blockchain, consortium block-
chain or private blockchain. Public blockchains, which can
be accessed by anyone on the Internet (“permission-less”),
have high information transparency and auditability, but sac-
rifice performance and a cost/incentive model. A consortium
blockchain is typically used across multiple organisations and
the rights to read/write on the blockchain may be restricted
to specific participants. In a private blockchain network, write
permissions are often kept within one organisation, although
this may include multiple divisions of a single organisation.
Private blockchains are the most flexible for configuration
because the network is governed and hosted by a single
organisation. A blockchain may be permissioned in requiring
that one or more authorities act as a gate for participation.
This may include permission to join the network and read
information from the blockchain, to initiate transactions, or
to create blocks. Permissions can be stored either on-chain or
off-chain. There are often tradeoffs between permissioned and
permission-less blockchains including transaction processing
rate, cost, censorship-resistance, reversibility, finality and flex-
ibility in changing and optimising the network rules.

B. Related Work

There are a number of projects which have been conducted
to address blockchain limitations including scalability, privacy
and cost. Quorum2 addresses specific challenges to blockchain
technology adoption in the financial industry, which supports
both public and private smart contracts to enable data privacy.
Plasma [13] is designed to be scalable to a large amount of
state updates by providing incentivised and enforced execution
of smart contracts via transaction fees. The Dfinity block-
chain [4] provides a scalable consensus mechanism which
can scale through continuous quorum selections driven by
a random beacon. In Dfinity, the interblock time (interval
between two blocks) takes a few seconds and a transaction
is committed after only two confirmation blocks. Komodo3

includes a delayed Proof of Work consensus mechanism to
ensure security while avoiding direct competition. Stellar4

provides a distributed payment infrastructure, which takes 2-
5 seconds to reach consensus. EOS5 is designed to enable

2https://www.jpmorgan.com/global/Quorum
3https://komodoplatform.com/
4https://www.stellar.org/
5https://eos.io/

Image credit to Weber, Ingo, Qinghua Lu, An Binh Tran, Amit Deshmukh, Marek Gorski, and Markus Strazds "A
platform architecture for multi-tenant blockchain-based systems." In 2019 IEEE International Conference on Software
Architecture (ICSA), 2019. 9

Ethereum Block

Block header contains three Merkle trees for Transactions, Receipts and States

Enable light clients to conduct various types of queries

Has this transaction been included in a particular block? (Transaction tree)

Tell me all instances of an event of type X (eg. a crowdfunding contract reaching its
goal) emitted by this address in the past Y days (Receipt tree)

What is the current balance of my account? (State tree)

Does this account exist? (State tree)

10

Ethereum Block
Modified Merkle Patricia Trie Tree

Recap: ETH is account-based

Need a data structure for efficient account insert/delete/update

Patricia: Practical Algorithm To Retrieve Information Coded In Alphanumeric

Three node types

Extension

Branch

Leaf

11

Ethereum Block

Ommer List

Sometimes valid block solutions don’t make to the main chain

Due to short mining time in ETH (~15 secs) where same blocks are mined within a
short interval

Only block mined first added to the main chain, while others left off

Goal: Provide small reward for miners when duplicate block solutions are found

Two valid blocks (only header, not transaction) can be included in Ommer List

 Valid blocks: within 6th generation with valid PoW solution

12

Ethereum Block

Ommer Rewards

Ommer headers are included in main block for 1/32 of the main block miner’s reward

Reward equation

(On + (8 - Bn)) * 5 / 8

where On and Bn are ommer and block numbers, resp.

Example: (1333 + 8 - 1335) * ⅝ = 3.75 ETH

13

Ethereum Blockchain (Abstract)

prev hash

accts.

…

prev hash

accts. Tx log

…

updated
world
state

Tx Log
messages

updated
world
state

Tx Log
messages

14

Ethereum Denominations
Wei

Named after Wei Dai (author of b-money)

1/1,000,000,000,000,000,000 (quintillion)

Szabo

Named after Nick Szabo (author of Bit-Gold)

Finney

Named after Hal Finney

First bitcoin user after Nakamoto

Multiplier Name

10 Wei

1012 Szabo

1015 Finney

1018 Ether

15

Ethereum vs Bitcoin

Bitcoin Ethereum

Specification Bitcoin Core client Ethereum yellow paper

Consensus SHA256 PoW Ethash PoW / PoS

Contract Language Script EVM bytecode

Block interval 10 mins 10-20 secs

Block size limit 1 MB 1,500,000 Gas

Difficulty adjustment After 2016 blocks After every block

Currency supply Fixed (21 million in total) Varied (101 million as of 2018)

Currency units 1 BTC = 108 satoshi 1 ETH = 1018 Wei

Mining Reward 12 BTC (halves every 4 years) 5 ETH (main) + 2/32 (ommer)

Smart contract Not supported Supported
Gencer, A. E., Basu, S., Eyal, I., Van Renesse, R., & Sirer, E. G. (2018, February). Decentralization in bitcoin and ethereum networks. In International Conference on Financial
Cryptography and Data Security (pp. 439-457). Springer, Berlin, Heidelberg. 16

Ethereum Nodes

P2P Network

Two types of nodes (like bitcoin)

Full nodes: store a copy of the entire blockchain

Validate all transactions and new blocks

Light nodes: store only block headers

Trust and request everything else from full nodes

Can only verify validity of data against state roots in block headers

Don’t execute transactions, used primarily for balance validation

Implemented in a variety of languages (Go, Rust, etc.)

17

Ethereum Accounts
Public/private key pair

Two types of accounts

§ External Owned Accounts (EOA) – most popular
Controlled by anyone with private keys

§ Contract Accounts
Controlled by code (smart contracts)

Account info stored in World State nodes

Nonce: List of number of TX’s from account

CodeHash: Hash of associated code (used in contract accounts) .

Computer program for a smart contract (hash of an empty string for EOAs)

StorageRoot: Merkle-Patricia trie tree root of account storage contents

Balance: Account balance

Ethereum block header

stateRoot transactionsRoot receiptsRoot

parentHash

ommersHash

beneficiary

logsBloom

timestamp extraData

difficulty

number

gasLimit

gasUsed

mixHashnonce

balance storageRoot nonce codeHash
Ethereum account state

Figure 1. Ethereum block header and state merkle tree.

blockchain-based systems. Section IV presents the proposed
architecture. Section V discusses the prototypical implementa-
tion of the architecture in the context of Laava’s use case. Sec-
tion VI evaluates the proposed architecture before Section VII
concludes the paper and outlines the future work.

II. BACKGROUND AND RELATED WORK

A. Background: Blockchain

A blockchain is a distributed append-only store of trans-
actions distributed across computational nodes and structured
as a linked list of blocks, each containing a set of trans-
actions [23]. Blockchain was introduced as the technology
behind Bitcoin [10]. Its concepts have been generalized to dis-

tributed ledger systems that verify and store any transactions
without coins or tokens [18], without relying on any central
trusted authority like traditional banking or payment systems.
Instead, all participants in the network can reach agreements
on the states of transactional data to achieve trust.

Merkle trees are an important part of blockchain, supporting
fundamental blockchain functionality and enabling efficient
and secure verification of large data structures. Merkle trees
have a hash-based structure that can ensure data integrity in
a trivial way: each node (except leaves) in the tree contains
the hash of its child node values; if nothing changed, the root
will be the same; otherwise only the hashes on the path from
the root to the changed leaves are changed. The Merkle tree
used in the Ethereum blockchain platform is called Merkle
Patricia tree [1]. There are three different Merkle Patricia
tree structures in Ethereum, as illustrated in Fig. 1: state tree,
transaction tree and receipt tree. Every block header contains
the roots of those three trees. The global state tree contains
a key-value pair for every account in the Ethereum network
and is updated by every transaction. The key is the account
address while the value is an encoding of details including
nonce, balance, storageRoot and codeHash. The root of state
tree is cryptographically dependent on all state tree data and
can be used as a unique and secure identifier for the state tree.

A smart contract is a user-defined program that is deployed
and executed on a blockchain system [12], [23], which can
express triggers, conditions and business logic [21] to enable

complex programmable transactions. Smart contracts can be
deployed and invoked through transactions, and are executed
across the blockchain network by all connected nodes. The
signature of the transaction sender authorizes the data payload
of a transaction to create or execute a smart contract. Trust
in the correct execution of smart contracts extends directly
from regular transactions, since (i) they are deployed as data
in a transaction and thus immutable; (ii) all their inputs are
through transactions and the current state; (iii) their code is
deterministic; and (iv) the results of transactions are captured
in the state and receipt trees, which are part of the consensus.

When using a blockchain, there are different types of
deployments, including public blockchain, consortium block-
chain or private blockchain. Public blockchains, which can
be accessed by anyone on the Internet (“permission-less”),
have high information transparency and auditability, but sac-
rifice performance and a cost/incentive model. A consortium
blockchain is typically used across multiple organisations and
the rights to read/write on the blockchain may be restricted
to specific participants. In a private blockchain network, write
permissions are often kept within one organisation, although
this may include multiple divisions of a single organisation.
Private blockchains are the most flexible for configuration
because the network is governed and hosted by a single
organisation. A blockchain may be permissioned in requiring
that one or more authorities act as a gate for participation.
This may include permission to join the network and read
information from the blockchain, to initiate transactions, or
to create blocks. Permissions can be stored either on-chain or
off-chain. There are often tradeoffs between permissioned and
permission-less blockchains including transaction processing
rate, cost, censorship-resistance, reversibility, finality and flex-
ibility in changing and optimising the network rules.

B. Related Work

There are a number of projects which have been conducted
to address blockchain limitations including scalability, privacy
and cost. Quorum2 addresses specific challenges to blockchain
technology adoption in the financial industry, which supports
both public and private smart contracts to enable data privacy.
Plasma [13] is designed to be scalable to a large amount of
state updates by providing incentivised and enforced execution
of smart contracts via transaction fees. The Dfinity block-
chain [4] provides a scalable consensus mechanism which
can scale through continuous quorum selections driven by
a random beacon. In Dfinity, the interblock time (interval
between two blocks) takes a few seconds and a transaction
is committed after only two confirmation blocks. Komodo3

includes a delayed Proof of Work consensus mechanism to
ensure security while avoiding direct competition. Stellar4

provides a distributed payment infrastructure, which takes 2-
5 seconds to reach consensus. EOS5 is designed to enable

2https://www.jpmorgan.com/global/Quorum
3https://komodoplatform.com/
4https://www.stellar.org/
5https://eos.io/

18

Ethereum Accounts
EOA Account Example

Private Key: 0x2dcef1bfb03d6a950f91c573616cdd778d9581690db1cc43141f7cca06fd08ee

64 hex characters

66 characters in total (with 0x appended). Case insensitive. Same derivation through
ECDSA (like Bitcoin)

Address: 0xA6fA5e50da698F6E4128994a4c1ED345E98Df50

Last 40 characters (20 bytes) of the Keccak-256 hash of the ECDSA public key.

42 characters in total (append 0x to front for hexadecimal representation)

19

Ethereum Accounts
Contract Accounts

Store and execute code – incur a fee/gas

Code execution triggered by transactions or messages from other contracts

Perform operations with arbitrary complexity (Turing completeness)

Manipulate its own persistent storage (i.e., have its own permanent state)

Can call other contracts

Externally owned
account

nonce balance codeHash storageRoot

Contract account

nonce balance codeHash storageRoot

<code>
<code>
<code>

20

Ethereum Accounts
Contract Accounts

All actions is set in motion by transactions fired from EOAs

Code in contract accounts is executed as instructed by input parameters included in the
transaction

Code executed by EVM running on Ethereum nodes

Externally owned
account

nonce balance codeHash storageRoot

Contract account

nonce balance codeHash storageRoot

<code>
<code>
<code>

21

Ethereum Wallet

An app to interact with Ethereum accounts

Manage a set of one or more external accounts

Used to store and transfer Ether

22

Ethereum Transaction
Ethereum can be considered as a transaction-based state machine

Block Block Block Block

Data

A: 20 ETH
B: 10 ETH
C: 0 ETH

Data

A: 10 ETH
B: 20 ETH
C: 0 ETH

Transaction

A sends 10 ETH to B
23

Ethereum Transaction

A request (initiated by EOA) to modify the state of the blockchain

Can run code (contracts) to change global world state

Cryptographically signed by originating EOA

Transaction Types

Send value from one account to another account

Create smart contract

Execute smart contract code

24

Ethereum Transaction
A submitted transaction includes the following information

Recipient: Receiving address

If EOA, will transfer value. If contract account, will execute contract code

Signature: Sender identifier

Value: Amount of ETH to transfer from sender to recipient (in WEI)

Data: optional field to include arbitrary data

gasLimit: Maximum amount of gas units consumed by transaction

Units of gas represent computational steps

gasPrice: The fee sender pays per unit of gas

{
from: "0xEA674fdDe714fd979de3EdF0F56AA9716B898ec8",
to: "0xac03bb73b6a9e108530aff4df5077c2b3d481e5a",
gasLimit: "21000",
gasPrice: "200",
nonce: "0",
value: "10000000000",
}

25

SMART CONTRACT

26

Smart Contracts
A collection of executable code (functions) and data (states) residing at a specific address
on Ethereum blockchain

Live in Ethereum-specific binary format called EVM bytecode

Turing Completeness

Function like an external account

Hold funds

Can interact with other accounts and smart contracts via messages

Contain code

Triggered by transactions

27

Smart Contract Programming
Solidity (javascript based)

Originally proposed by Gavin Wood

Object-oriented PL

Most popular

Serpent (python based)

LLL (lisp based)

Mutan (Go based)

Deprecated

Viper, Lisk, Chain, etc

28

Ethereum Smart Contract Programming
Solidity

JavaScript syntax
Support writing smart contracts and EVM bytecode compile
https://docs.soliditylang.org/en/v0.8.2/ (documentation)

Serpent
Python syntax
Support writing smart contracts and EVM bytecode compilation
Clean and simple clean
LLL as compiler
https://github.com/ethereum/serpent

29

https://docs.soliditylang.org/en/v0.8.2/

Smart Contract Examples
Simple Storage

Store a single number accessible by anyone in the world

Anyone can call set again to overwrite number

The number will still be stored in the history of the blockchain

pragma solidity ^0.4.0;

contract SimpleStorage {

uint storedData;

function set(uint x) public {

storedData = x;

}

function get() public view returns (uint) {

return storedData;

}

}

30

Smart Contract Examples
Subcurrency

Generate coins out of thin air, but can be done only by the one who created contract

Anyone can send coins to each other without registering username & password

pragma solidity ^0.4.21;

contract Coin {

address public minter;

mapping (address => uint) public balances;

event Sent(address from, address to, uint amount);

function Coin() public {

minter = msg.sender;

}

function mint(address receiver, uint amount) public {

if (msg.sender != minter) return;

balances[receiver] += amount;

}

function send(address receiver, uint amount) public {

if (balances[msg.sender] < amount) return;

balances[msg.sender] -= amount;

balances[receiver] += amount;

emit Sent(msg.sender, receiver, amount);

}

}

Keyword "public" makes those
variables readable from outside

Events allow light clients to react on
changes efficiently

This is the constructor whose code is
run only when the contract is created

31

ETHEREUM VIRTUAL MACHINE

Most slides derived from the original ones by Takenobu T.

32

Ethereum Virtual Machine
Smart contracts executed by nodes running Ethereum Virtual Machine (EVM)

Every node contains a virtual machine (similar to Java)

Compile code from high-level language to bytecode

Execute smart contract code and broadcast state

Every full-node on the blockchain processes every transaction and stores the entire state

33

Ethereum Virtual Machine

Address A Account state A

code storage

Address A Account state A

code storage

Word state 𝜎! Word state 𝜎!"#

Transaction / message

data

Update

Ethereum Virtual Machine
(EVM)

34

Ethereum Virtual Machine

EVM CodeCode

Ethereum Virtual Machine
(EVM)Virtual machine

EVM code is executed on EVM
EVM is the runtime environment for smart contracts in Ethereum

Runtime system
(process)

Ethereum node
(Geth, Parity, …)

Physical processor
(x86, ARM,…)

hardware

software

35

EVM Architecture

Virtual ROM

EVM Code

(immutable)

Program counter

Gas available

Stack Memory (Account) storage

World state 𝜎
(persistent)

Machine state 𝜇
(volatile)

PC

Gas

Simple stack-based architecture

36

Machine space of EVM

Registers
Stack Memory (Account) storage

byte addressing
linear memory

256 bits x 1024 elements

-

stack memory volatile memory Persistent memory

256 bits – 256 bits
key-value store

37

Machine space of EVM

Stack

256 bits

256-bit read/write

Operation with 16 elements
in stack top

1024 elements

All operations performed on stack
Access with stack instructions such as PUSH/POP/COPY/SWAP/JUMP

Max stack depth = 1024
Program aborts if stack size exceeded; miner keeps gas

38

EVM Memory

Memory

8 bits

256-bit load

256-bit store or
8-bit store

Linear memory
Byte-level access
Access with MSTORE/MSTORE8/MLOAD instructions
All locations in memory are well-defined initially as zero

39

?

EVM Account Storage

(Account) storage

256 bits

256-bit load / store

Storage is key-value store mapping 256-bit words to 256-bit words
Access with SSTORE/SLOAD instructions
All locations in storage are well-defined initially as zero

Key 1 Value 1
Key 2 Value 2

… …
Key n Value n

256 bits

40

EVM Code

Assembly view Bytecode view

PUSH1 e0
PUSH1 02

EXP
PUSH1 00

CALLDATALOAD
…

0x60e060020a600035

EVM Code is the bytecode that the EVM can natively execute
41

EVM Execution model

EVM code

PC

Gas avail

Memory

Account storage

operations

instructions

stack top

Stack

push/pop/…

ra
nd

om
ac

ce
ss

random
access

42

EVM Message Call

Contract account

World state
EOA

Contract accountEVM code

Message

Message

EVM code

EVM can send a message to other account
The depth of message call is limited to less than 1024 levels

43

EVM Message Call Instructions

MemoryStack MemoryStack

Input data

CALL instruction

arguments

return value

RETURN instruction

EVM EVM

Message call triggered by CALL instruction
Arguments and return values are passed using memory

44

Ethereum Gas
All programmable computation in Ethereum subject to fee (gas)

Gas Price: Current market price of a unit of Gas (in Wei)

https://ethgasstation.info/ for price

Set before a transaction by user

Gas Limit: maximum amount of Gas to use

 All blocks have a Gas Limit

GasCost = gasLimit x gasPrice

Help to regulate load on network

45

https://ethgasstation.info/

Ethereum Gas
Why Need Gas?

Halting problem (infinite loop)

Problem: Cannot tell whether a program will run forever from compiled code

Solution: Charge fee per computation step to limit infinite loop and stop flawed code from
executing

Gas (TX fees) prevents submitting Tx that runs for many steps

Essentially a measure of how much user is willing to spend on a transaction even if buggy

Every EVM instruction costs gas

 Every Tx specifies an estimate of gas to be spent

 gasPrice: conversion: gas ⇾ Wei

 gasLimit: max gas for Tx

46

Ethereum Gas Deduction

 Tx specifies gasPrice: conversion gas ⇾ Wei

 gasLimit: max gas for Tx

(1) if gasLimit x gasPrice > msg.sender.balance: abort

(2) deduct gasLimit x gasPrice from msg.sender.balance

(3) set Gas = gasLimit

(4) execute Rx: deduct gas from Gas for each instruction

 if (Gas < 0): abort, miner keeps gasLimit × gasPrice

(5) Refund Gas x gasPrice to msg.sender.balance

47

Ethereum Gas Deduction

EVM
code

Transaction

Message call

EOA

Contract account

Gas

Message

Gas supply

Refund

World state

Balance

48

Ethereum Gas Deduction

PC

Gas avail

Memory

storage

operations

Stack

EVM
code

Gas

more
Gas

more
Gas

message call

49

Ethereum Gas Prices: Example

SSTORE addr (32 bytes), value (32 bytes)

zero ⇾ non-zero: 20,000 gas

non-zero ⇾ non-zero: 5,000 gas

non-zero ⇾ zero: 15,000 gas refund

SUICIDE: kill current contract. 24,000 gas refund

Refund is given for reducing size of blockchain state

50

Current Ethereum Gas Limit

GasLimit is increasing over time ⇒ each Tx takes more instructions to execute

51

Ethereum Mining
Ethash Proof of Work

Keccak-256 (SHA3 variant)

Memory-hard computation

Memory-easy validation

Cannot exploit ASIC

Mining similar to Bitcoin

 nonce = rand()

 while (SHA3(block,nonce) * difficult > threshold

 nonce++

 return nonce

52

Ethereum Mining
Difficulty adjustment

After every block (vs. after 2016 blocks in bitcoin)

 block_diff = parent_diff + parent_diff / 2048 *
 max(1 - (block_timestamp - parent_timestamp) / 10, -99) +
 int(2**((block.number / 100000) - 2))

If the difference (block_timestamp - parent_timestamp) is
§ < 10 secs, adjust upwards by parent_diff / 2048 * 1

§ 10 - 19 secs, unchanged
§ >= 20 seconds, adjust downwards from parent_diff/ 2048 * -1 to parent_diff /

2048 * -99

53

Ethereum Mining
block_diff = parent_diff + parent_diff / 2048 *

 max(1 - (block_timestamp - parent_timestamp) / 10, -99) +
 int(2**((block.number / 100000) - 2))

Difficulty bomb

Increases the difficulty exponentially every 100,000 blocks

Goal: To reduce number of miners

 Transition from PoW to Proof-of-Stake (PoS)

Shift in balance of power and profits away from miners into investors and
users of the blockchain

54

Ethereum Mining
Impact of Difficulty Bomb

55

Ethereum PoS Transition

Ethereum is moving to Proof of Stake (PoS) consensus (ETH 2.0 phase 1)

PoS does not incur huge computation resource and energy consumption

 Also reduce 51% attack and fast TX validation
 Disadvantage: may be more centralized

Miners become “validators” and deposit to an escrow account

The more escrow a miner deposit, the higher chance it will be chosen to
mint next block

Lose deposit if minting a block with invalid transactions

56

Decentralized Applications (DApp)

57

What is DApp?

Distributed application (and its data) running across multiple nodes

No single (central) point of failure, unkillable

58

DApp vs. Smart Contract

DApp is a complete application containing

 Front-end (e.g., GUI)

 Back-end (e.g., blockchain)

Smart contract is only a part of DApp that interacts with the blockchain

DApp

Smart
Contract

59

DApp vs. Centralized App

Traditional Web Application

Decentralized Web Application

Client

Front-end (HTML, CSS, JavaScript)

Back-end (JSP/ASP/PHP)

DB

Internet

Client

Front-end (HTML, CSS, JavaScript)

Internet

EVM

Smart Contract

Web
server

Ethereum

Load/store state

Interact

Load/store state

Execute

blockchain

Architectural differences

60

DB

DApp vs. Centralized Application
Centralized applications follow standard client-server model

 Front-end and back-end run by a single service provider

Advantages

Low latency, high throughput

Cost

Easy to manage

Disadvantage

Security, single point of failure

Privacy

Censorship

Controlled
by single
provider

61

DApp vs. Centralized Application
Decentralized applications follow P2P model

Front-end run by some entities (P2P, static servers)

Front-end talks to smart contracts using its API (via Wallets)

Smart contracts execute code and store data on blockchain network

Advantages

No censorship

No single-point of failure

Disadvantage

Cost

High delay, low throughput

Privacy: the right to be forgotten

smart
contracts

62

Building DApp

Main principles to develop a DApp

§ Develop Front-end: create app’s user interface

§ Add library: to connect front-end with wallet and blockchain
User’s wallet connect to the network and send TXs

§ Write smart contract: contains your app’s core functions,
including anything that modifies user’s wallet “contents”

§ Deploy: deploy smart contract to the blockchain
• Submit TX containing compiled smart contract without

specifying any recipients

Front-end

library

Smart
contract

Blockchain

63

DApp Workflow Example

Image from https://livebook.manning.com/book/exploring-
ethereum-dapps/chapter-1/94

Life cycle of a voting application
Voting TX is created by voter (via Web UI) via
Voting Smart Contract
TX validated and propagated throughout the
network
Voter gets confirmation once TX included in
Blockchain

64

https://livebook.manning.com/book/exploring-ethereum-dapps/chapter-1/94
https://livebook.manning.com/book/exploring-ethereum-dapps/chapter-1/94

Off-chain Storage
§ Sometime data is too large to store directly on blockchain

• Increase block size, computation (validation) and storage overhead on blockchain
nodes

§ Solution: store data content off chain, and its hash and address on chain
• Example: IPFS, Swarm, Filecoin

1. upload

2. store
encrypted file

(hash, url)

3. submit

4. validation &
confirmation

TX TX

5. notification Sm
ar

t C
on

tr
ac

t

DAPP

65

